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Periodic Billiard Paths in Triangles

Abstract

Let a point move on a frictionless plane bounded by a closed
figure. If it hits the boundary, it changes its direction of
motion such that the angle of reflection is equal to the angle
of incidence. The path that the point follows is called a billiard
path. If the point returns to a location with the same direction
of motion it had before at that location, then its path is said
to be periodic. While it is known that a periodic billiard path
exists in every acute triangle and in every right triangle, it is an
open problem whether or not every obtuse triangle has a
periodic billiard path.
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» A periodic path is one whose point returns to a location with
the same direction of motion it had before at that location

» A perpendicular path is one whose point hits an edge at a
right angle
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at C), no billiard path starting at A can return to A
[Tok9s]
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The path starts at A but cannot return to A because it hits C
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A A = A

The path starts at A but cannot return to A because it hits B
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Every acute triangle has a periodic billiard path

The orthic triangle of the given acute triangle is the triangle whose
vertices are the bases of the altitudes of the given acute triangle
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BPOR has two right angles; hence it is inscribed into a circle
ZAPR = ZABQ because the same arc of this circle supports them
Likewise, ZAPQ = ZACR

ZABQ = ZACR because both complement /BAC to /2

Thus, ZAPR = ZAPQ

Similarly, /BQP = /BQR and ZCRQ = ZCRP
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- Some well-known results

Every rational triangle has a periodic billiard path

(A rational triangle is one whose angles are rational multiples of 7)
One such path is a perpendicular path that doesn't hit a vertex

Any path on a rational triangle has only finitely many possible
directions

A path perpendicular to an edge will hit the same edge
perpendicularly again, thus it is periodic

A more detailed sketch of a proof is in [Sch06, p. 3]
A detailed proof is in [Bos92]
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An exercise

Let a square be in a rectangular coordinate system with its sides
parallel to the coordinate axes. Let a billiard path in the square
start at a vertex. If the path starts at a rational slope, then it is a
finite path (that is, it ends at a vertex). Otherwise, it is a
semi-infinite path.
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parallel to the coordinate axes. Let a billiard path in the square
start at a vertex. If the path starts at a rational slope, then it is a
finite path (that is, it ends at a vertex). Otherwise, it is a
semi-infinite path.

This can easily be proven by unfolding.
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Do all triangles have periodic billiard paths?

» Do all scalene triangles have periodic billiard paths?
» Do all irrational triangles have periodic billiard paths?

Are all perpendicular paths either periodic or finite? [Rui91]
[Gut96, p. 24]

» Do all obtuse triangles have periodic billiard paths?

Certain obtuse triangles have periodic perpendicular paths
[HHOO0]

Periodic paths exist for all triangles with angles that are at
most 100° [Sch09]
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